

Description

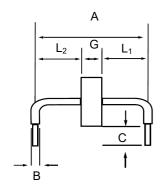
The SPCL1 series of high power TVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. It features a very fast response and ultra low clamping characteristics over traditional metal oxide varistor (MOV) solutions. They can be connected in series and / or parallel to create a very high surge current protection solution.

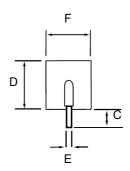
Applications

- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

Features

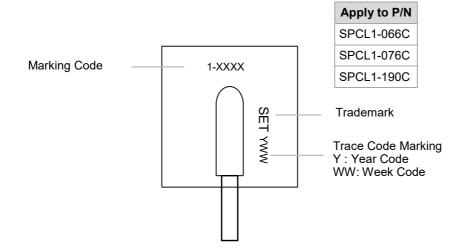
- Very low clamping voltage
- Sharp breakdown voltage
- Low slope resistance
- Bi-directional
- IEC-61000-4-2 ESD 30 kV (Air), 30 kV (Contact)
- Symmetric in leads width for easier soldering during assembly
- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Surge protection of lightning in accordance with IEC61000-4-5
- Halogen-free
- RoHS compliant
- Glass passivated junction
- Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver

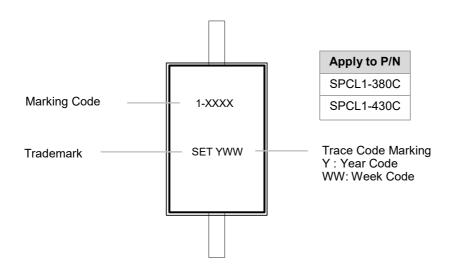

Functional Diagram



+86 592-571-5838 www.SETsafe.com www.SETfuse.com E-mail: sales@SETfuse.com

Package Outline Dimensions


Symbol	Millimeters	Inches							
А	24.15 ± 1.00	0.950 ± 0.040							
В	2.50 ± 0.60	0.100 ± 0.024							
С	6.00 ± 1.00	0.236 ± 0.039							
D	14.48 max.	0.570 max.							
E	1.27 ± 0.05	0.050 ± 0.002							
F	12.70 max.	0.500 max.							
G-066C / 076C	2.44 ± 1.00	0.096 ± 0.040							
G-190C	4.80 ± 1.00	0.189 ± 0.040							
G-380C / 430C	5.60 ± 1.00	0.220 ± 0.040							
L1 / L2	L1 = L2 tolerance ± 1.0 mm (0.04 inch)								


Part Numbering System

Marking

Type 1 - Side View

Type 2 - Top View

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Part Number	Device Marking Code	Break Volt V _{BR}	age	Test Current I _T	Stand-off Voltage V _R	Max. Reverse Leakage I _R @V _R	Typical I _R @85°C	Max. Clamping Voltage V _{CL} @ I _{pp} Peak Pulse Current (I _{PP}) (Note 1)		Voltage Temp C V _{CL} @ I _{pp} Peak Coefficient 0 Pulse Current OF V _{BR}		Voltage Temp @ I _{pp} Peak Coefficient se Current OF V _{BR}	
		Min	Max										
		(V)		(mA)	(V)	(μΑ)	(μΑ)	I _{PP} (A)	V _{CL} (V)	(%/°C)	(nF)		
SPCL1 - 066C	1-066C	72.0	80.0	10	66	10	15	1000	120	0.1	8.5		
SPCL1 - 076C	1-076C	85.0	95.0	10	76	10	15 100		140	0.1	8.5		
SPCL1 - 190C	1-190C	200.0	245.0	10	190	10	15	15 1000 290		0.1	2.5		
SPCL1 - 380C	1-380C	401.0	443.0	10	380	10	15	15 1000 570		0.1	2.0		
SPCL1 - 430C	1-430C	440.0	490.0	10	430	10	15	1000	625	0.1	2.0		

Note

Using 8/20 µs wave shape as defined in IEC 61000-4-5.

Maximum Ratings and Thermal Characteristics

(T_A = 25 °C unless otherwise specified.)

Parameter	Symbol	Value	Unit
Operating Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 125	°C
Current Rating (Note 1)	I _{pp}	1	kA

Note:

Rated I_{PP} measured with 8/20 µs pulse.

Ratings and Characteristic Curves(T_A = 25 °C unless otherwise noted)

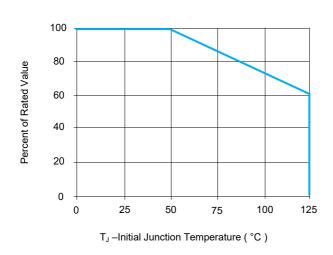


FIGURE 1 Peak Pulse Power Derating Curve

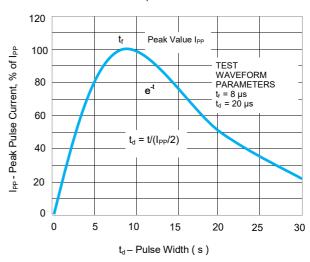


FIGURE 2 Pulse Waveform

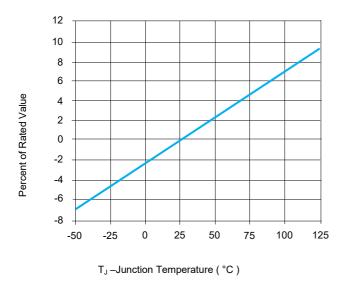


FIGURE 3 Typical VBR Vs Junction Temperature

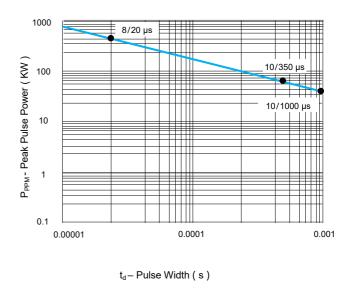
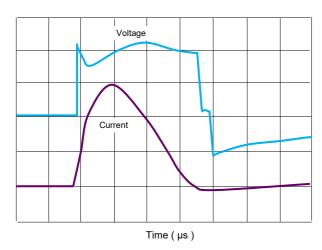
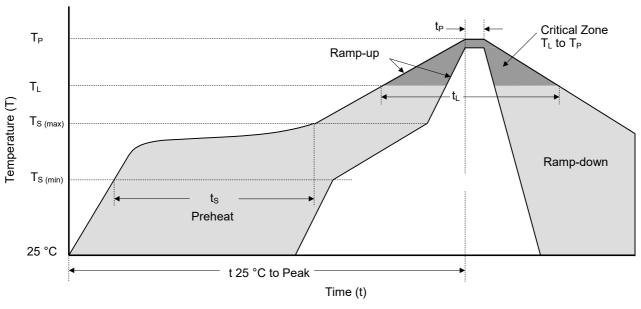



FIGURE 4Peak Pulse Power Rating Curve

Note: The power dissipation causes a change in avalanche voltage during the surge and the avalanche voltage eventually returns to the original value when the transient has passed.

FIGURE 5 Surge Response (8/20 Surge current waveform)


Flow/Wave Soldering (Solder Dipping) Physical Specifications

Peak Temperature	260 °C +0 / -5 °C
Dipping Time	10 seconds
Soldering Number	1 time

Weight	Contact manufacturer
Case	Epoxy encapsulated
Terminal	Silver plated leads, solderable per MIL-STD-750
	Method 2026

Soldering Parameters

Reflowing Condition

Reflow Soldering	Reflow Soldering Parameters							
	Temperature Min (T _{S (min)})	150 °C						
Pre-heat	Temperature Max (T _{S (max)})	200 °C						
	Time (min to max) (t _s)	60 ~ 120 seconds						
Average Ramp Up Rate (L	iquidus Temp (TL) to Peak	3 °C / second max.						
T _S (max) to T _L	Ramp-up Rate	3 °C / second max.						
D #	Temperature (T _L) (Liquidus)	217 °C						
Reflow	Time (min to max) (t _∟)	60 ~ 150 seconds						
Peak Temp	erature (T _P)	260 ^{+0/-5} °C						
Time of within 5 °C of Act	ual Peak Temperature (t _P)	20 ~ 40 seconds						
Ramp-do	own Rate	6 °C / second max.						
Time from 25 °C to	Time from 25 °C to Peak Temperature							
Do Not	Do Not Exceed							

Packaging Information

Part Number	Package	Quantity	Packaging Option
SPCL1-XXXX	SPCL Package	56 PCS / Inner Box	Bulk
SPCL1-XXXX-12	SPCL Package	12 PCS / Inner Box	Bulk

Glossary

Item	Description
V _C	Clamping Voltage Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}).
I _R	Reverse Leakage Current Current measured at $V_{R.}$ NOTE : Also shown as I_{D} for stand-by current.
V _{BR}	Breakdown Voltage Voltage across TVS at a specified current I_T in the breakdown region.
I _{PPM}	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
P _{M(AV)}	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
P _{PPM}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_{C}).
CJ	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge Voltage Peak voltage across an TVS for a specified forward surge current (I_{FS}) and time duration. NOTE: Also shown as $V_{F.}$
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE: Also shown as I _{F.}
α _{V(BR)}	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I _{PP}	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape.
lτ	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE: Also shown as I_{BR} .

--(GB-T 18802.321 / IEC 61643-321 / JESD210A)

Usage

- 1. TVS must be operated in the specified ambient temp.
- 2. Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1. If TVS is visually damaged, please replace it.
- 2. TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1. Storage Temp. Range: (-55 to 150) °C.
- 2. Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1. TVS should not be exposed to the open air, nor direct sunshine.
- 2. TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3. TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1. Do not knock TVS when installing, to avoid mechanical damage.
- 2. Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.

SPCL1 Series

TVS Diodes

Transient Voltage Suppression Diodes

Transient Voltage Suppressor (Surface Mount) Features Overview

	1	\								/		
	DO-221AC	0	0	0	0	0	SMA6L	0	0	0		
be	DO-214AA	0	0	0	0	0	0	SACB	SMBJ	P6SMB		
Package Type	DO-214AB										Series	
ckag	DO-214AC	0	0	SMAJ	P4SMA	SMA6J	0	0	0	0	ies	
Ра	SOD-123FL	SMF	P4SMF									
	SMTO-218	0	0	0	0	0	0	0	0	0		
Prod	duct Outline (mm)	1.30	3.65		5.04		5.20 9 7		5.40			
V i Revers	R / V _{WM} (V) se Stand-off Voltage	5.0 ~ 250	5.0 ~ 85	5.0 ~ 440	5.8 ~ 468	5.0 ~	- 250	5.0 ~ 50 5.0 ~ 440		5.8 ~ 512		
(1) Rat Po	PPPM (W) 0/1000 µs) ed Peak ImPulse wer Dissipation	200	200 400				600 500 600					
PPM Rated P	(kA)(8/20 µs) Peak ImPulse Current					0						
	Operating mperature (°C)					-55 to +150						

SPCL1 Series (1 kA)

Transient Voltage Suppressor (Surface Mount) Features Overview

	1	\								,	^
	DO-221AC	0	0	0	0	0	0	0	0	0	
be	DO-214AA	0	0	0	0	0	0	0	0	0	
Package Type	DO-214AB	SMCJ	1.5SMC	3.0SMCJ	SMDJ	5.0SMDJ					Series
ckag	DO-214AC	0	0	0	0	0	0	0	0	0	ies
Pa	SOD-123FL										
	SMTO-218	0	0	0	0	0	SPC1	SPC3	SPC6	SPC10	\rightarrow
Prod	duct Outline (mm)			7.94				7.09	8.27		
V i Revers	R / V _{WM} (V) se Stand-off Voltage	5.0 ~ 440	5.8 ~ 512	5.0 ~	- 440	12 ~ 170	380 / 430	66	58 ~ 76	58 ~ 86	
(10 Rate Po	PPPM (W) 0/1000 μs) ed Peak ImPulse wer Dissipation	1500 3000				5000			0		
PPM (Rated P	(kA)(8/20 µs) eak ImPulse Current			0		1	3	6	10		
C Te	perating mperature (°C)			-55 to +150		+	-55 to	o +125			

Transient Voltage Suppressor (Axial Lead) Features Overview

SPCL1 Series (1 kA)

	/	N														/	
	DO-201	0	0	0	1.5KE	LCE	0	0	0	0	0	0	0	0	0	0	
Гуре	DO-41	P4KE															
Package Type	DO-15	0	SAC	P6KE	0	0	0	0	0	0	0	0	0	0	0	0	Series
Pack	P600	0					5KP	15KPA	20KPA	30KPA							0,
Ra	adial lead	0	0	0	0	0	0	0	0	0	SPCL1	SPCL3	SPCL6	SPCL10	SPCL15	SPCL20	
	ct Outline mm)	4.65 0.00 1.00 ± 4.65 1.00 ± 4	Ф3.10 02: 9	57.50	Φ5.05 Sc. 8	59.15		Φ8.85 	59.65		20.48	17.00	12.70 +-24.15-	20.48	14.50	2.00	
V _R / N Reverse Sta	V _{WM} (V) and-off Voltage	5.8 ~ 468	5.0 ~ 50	5.8 ~ 512	5.8 ~ 512	6.5 ~ 90	5.0 ~ 250	17 ~ 280	20 ~ 300	28 ~ 360	76	15 ~ 430	30 ~ 430	15 ~ 530	58 ~ 380	16 ~ 76	
Pel (10/1 Rated Power	PM (W) 000 µS) leak ImPulse Dissipation	400	500	600	15	00	5000 15000 20000 30000							0			
PPM (KA	A)(8/20 µs) ImPulse Current	0							1	3	6	10	15	20			
Temp	erating perature °C)		-55 to +150										-55	5 to +125			